Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neurosci ; 17: 1200661, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37547142

RESUMO

Much of the neural machinery of the early visual cortex, from the extraction of local orientations to contextual modulations through lateral interactions, is thought to have developed to provide a sparse encoding of contour in natural scenes, allowing the brain to process efficiently most of the visual scenes we are exposed to. Certain visual stimuli, however, cause visual stress, a set of adverse effects ranging from simple discomfort to migraine attacks, and epileptic seizures in the extreme, all phenomena linked with an excessive metabolic demand. The theory of efficient coding suggests a link between excessive metabolic demand and images that deviate from natural statistics. Yet, the mechanisms linking energy demand and image spatial content in discomfort remain elusive. Here, we used theories of visual coding that link image spatial structure and brain activation to characterize the response to images observers reported as uncomfortable in a biologically based neurodynamic model of the early visual cortex that included excitatory and inhibitory layers to implement contextual influences. We found three clear markers of aversive images: a larger overall activation in the model, a less sparse response, and a more unbalanced distribution of activity across spatial orientations. When the ratio of excitation over inhibition was increased in the model, a phenomenon hypothesised to underlie interindividual differences in susceptibility to visual discomfort, the three markers of discomfort progressively shifted toward values typical of the response to uncomfortable stimuli. Overall, these findings propose a unifying mechanistic explanation for why there are differences between images and between observers, suggesting how visual input and idiosyncratic hyperexcitability give rise to abnormal brain responses that result in visual stress.

2.
J Vis ; 22(6): 10, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35639404

RESUMO

Color induction is the phenomenon where the physical and the perceived colors of an object differ owing to the color distribution and the spatial configuration of the surrounding objects. Previous works studying this phenomenon on the lsY MacLeod-Boynton color space, show that color assimilation is present only when the magnocellular pathway (i.e., the Y axis) is activated (i.e., when there are luminance differences). Concretely, the authors showed that the effect is mainly induced by the koniocellular pathway (s axis), but not by the parvocellular pathway (l axis), suggesting that when magnocellular pathway is activated it inhibits the koniocellular pathway. In the present work, we study whether parvo-, konio-, and magnocellular pathways may influence on each other through the color induction effect. Our results show that color assimilation does not depend on a chromatic-chromatic interaction, and that chromatic assimilation is driven by the interaction between luminance and chromatic channels (mainly the magno- and the koniocellular pathways). Our results also show that chromatic induction is greatly decreased when all three visual pathways are simultaneously activated, and that chromatic pathways could influence each other through the magnocellular (luminance) pathway. In addition, we observe that chromatic channels can influence the luminance channel, hence inducing a small brightness induction. All these results show that color induction is a highly complex process where interactions between the several visual pathways are yet unknown and should be studied in greater detail.


Assuntos
Percepção de Cores , Vias Visuais , Humanos
3.
Neural Comput ; 34(2): 378-414, 2022 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-34915573

RESUMO

Lateral connections in the primary visual cortex (V1) have long been hypothesized to be responsible for several visual processing mechanisms such as brightness induction, chromatic induction, visual discomfort, and bottom-up visual attention (also named saliency). Many computational models have been developed to independently predict these and other visual processes, but no computational model has been able to reproduce all of them simultaneously. In this work, we show that a biologically plausible computational model of lateral interactions of V1 is able to simultaneously predict saliency and all the aforementioned visual processes. Our model's architecture (NSWAM) is based on Penacchio's neurodynamic model of lateral connections of V1. It is defined as a network of firing rate neurons, sensitive to visual features such as brightness, color, orientation, and scale. We tested NSWAM saliency predictions using images from several eye tracking data sets. We show that the accuracy of predictions obtained by our architecture, using shuffled metrics, is similar to other state-of-the-art computational methods, particularly with synthetic images (CAT2000-Pattern and SID4VAM) that mainly contain low-level features. Moreover, we outperform other biologically inspired saliency models that are specifically designed to exclusively reproduce saliency. We show that our biologically plausible model of lateral connections can simultaneously explain different visual processes present in V1 (without applying any type of training or optimization and keeping the same parameterization for all the visual processes). This can be useful for the definition of a unified architecture of the primary visual cortex.


Assuntos
Córtex Visual , Cognição , Neurônios , Estimulação Luminosa/métodos , Córtex Visual/fisiologia , Percepção Visual/fisiologia
4.
Vision (Basel) ; 5(3)2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34449758

RESUMO

The human visual system is not a colorimeter. The perceived colour of a region does not only depend on its colour spectrum, but also on the colour spectra and geometric arrangement of neighbouring regions, a phenomenon called chromatic induction. Chromatic induction is thought to be driven by lateral interactions: the activity of a central neuron is modified by stimuli outside its classical receptive field through excitatory-inhibitory mechanisms. As there is growing evidence of an excitation/inhibition imbalance in migraine, we compared chromatic induction in migraine and control groups. As hypothesised, we found a difference in the strength of induction between the two groups, with stronger induction effects in migraine. On the other hand, given the increased prevalence of visual phenomena in migraine with aura, we also hypothesised that the difference between migraine and control would be more important in migraine with aura than in migraine without aura. Our experiments did not support this hypothesis. Taken together, our results suggest a link between excitation/inhibition imbalance and increased induction effects.

6.
J Opt Soc Am A Opt Image Sci Vis ; 36(1): 22-31, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30645335

RESUMO

Color induction is the influence of the surrounding color (inducer) on the perceived color of a central region. There are two different types of color induction: color contrast (the color of the central region shifts away from that of the inducer) and color assimilation (the color shifts towards the color of the inducer). Several studies on these effects have used uniform and striped surrounds, reporting color contrast and color assimilation, respectively. Other authors [J. Vis.12(1), 22 (2012)1534-736210.1167/12.12.1] have studied color induction using flashed uniform surrounds, reporting that the contrast is higher for shorter flash duration. Extending their study, we present new psychophysical results using both flashed and static (i.e., non-flashed) equiluminant stimuli for both striped and uniform surrounds. Similarly to them, for uniform surround stimuli we observed color contrast, but we did not obtain the maximum contrast for the shortest (10 ms) flashed stimuli, but for 40 ms. We only observed this maximum contrast for red, green, and lime inducers, while for a purple inducer we obtained an asymptotic profile along the flash duration. For striped stimuli, we observed color assimilation only for the static (infinite flash duration) red-green surround inducers (red first inducer, green second inducer). For the other inducers' configurations, we observed color contrast or no induction. Since other studies showed that non-equiluminant striped static stimuli induce color assimilation, our results also suggest that luminance differences could be a key factor to induce it.

7.
Vision Res ; 154: 60-79, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30408434

RESUMO

In this study we provide the analysis of eye movement behavior elicited by low-level feature distinctiveness with a dataset of synthetically-generated image patterns. Design of visual stimuli was inspired by the ones used in previous psychophysical experiments, namely in free-viewing and visual searching tasks, to provide a total of 15 types of stimuli, divided according to the task and feature to be analyzed. Our interest is to analyze the influences of low-level feature contrast between a salient region and the rest of distractors, providing fixation localization characteristics and reaction time of landing inside the salient region. Eye-tracking data was collected from 34 participants during the viewing of a 230 images dataset. Results show that saliency is predominantly and distinctively influenced by: 1. feature type, 2. feature contrast, 3. temporality of fixations, 4. task difficulty and 5. center bias. This experimentation proposes a new psychophysical basis for saliency model evaluation using synthetic images.


Assuntos
Atenção/fisiologia , Movimentos Oculares/fisiologia , Psicofísica , Percepção Visual/fisiologia , Adulto , Feminino , Fixação Ocular/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
9.
J Vis ; 18(11): 10, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30347096

RESUMO

The color appearance of a surface depends on the color of its surroundings (inducers). When the perceived color shifts towards that of the surroundings, the effect is called "color assimilation" and when it shifts away from the surroundings it is called "color contrast." There is also evidence that the phenomenon depends on the spatial configuration of the inducer, e.g., uniform surrounds tend to induce color contrast and striped surrounds tend to induce color assimilation. However, previous work found that striped surrounds under certain conditions do not induce color assimilation but induce color contrast (or do not induce anything at all), suggesting that luminance differences and high spatial frequencies could be key factors in color assimilation. Here we present a new psychophysical study of color assimilation where we assessed the contribution of luminance differences (between the target and its surround) present in striped stimuli. Our results show that luminance differences are key factors in color assimilation for stimuli varying along the s axis of MacLeod-Boynton color space, but not for stimuli varying along the l axis. This asymmetry suggests that koniocellular neural mechanisms responsible for color assimilation only contribute when there is a luminance difference, supporting the idea that mutual-inhibition has a major role in color induction.


Assuntos
Percepção de Cores/fisiologia , Sensibilidades de Contraste/fisiologia , Luz , Adolescente , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Psicofísica , Adulto Jovem
10.
J Opt Soc Am A Opt Image Sci Vis ; 35(4): 626-638, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29603951

RESUMO

Tone-mapping operators (TMOs) are designed to generate perceptually similar low-dynamic-range images from high-dynamic-range ones. We studied the performance of 15 TMOs in two psychophysical experiments where observers compared the digitally generated tone-mapped images to their corresponding physical scenes. All experiments were performed in a controlled environment, and the setups were designed to emphasize different image properties: in the first experiment we evaluated the local relationships among intensity levels, and in the second one we evaluated global visual appearance among physical scenes and tone-mapped images, which were presented side by side. We ranked the TMOs according to how well they reproduced the results obtained in the physical scene. Our results show that ranking position clearly depends on the adopted evaluation criteria, which implies that, in general, these tone-mapping algorithms consider either local or global image attributes but rarely both. Regarding the question of which TMO is the best, KimKautz ["Consistent tone reproduction," in Proceedings of Computer Graphics and Imaging (2008)] and Krawczyk ["Lightness perception in tone reproduction for high dynamic range images," in Proceedings of Eurographics (2005), p. 3] obtained the better results across the different experiments. We conclude that more thorough and standardized evaluation criteria are needed to study all the characteristics of TMOs, as there is ample room for improvement in future developments.

11.
IEEE Trans Pattern Anal Mach Intell ; 35(11): 2810-6, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24051738

RESUMO

We propose a saliency model termed SIM (saliency by induction mechanisms), which is based on a low-level spatiochromatic model that has successfully predicted chromatic induction phenomena. In so doing, we hypothesize that the low-level visual mechanisms that enhance or suppress image detail are also responsible for making some image regions more salient. Moreover, SIM adds geometrical grouplets to enhance complex low-level features such as corners, and suppress relatively simpler features such as edges. Since our model has been fitted on psychophysical chromatic induction data, it is largely nonparametric. SIM outperforms state-of-the-art methods in predicting eye fixations on two datasets and using two metrics.


Assuntos
Inteligência Artificial , Biomimética/métodos , Interpretação de Imagem Assistida por Computador/métodos , Modelos Biológicos , Modelos Teóricos , Reconhecimento Automatizado de Padrão/métodos , Percepção Visual/fisiologia , Algoritmos , Simulação por Computador , Humanos
12.
PLoS One ; 8(5): e64086, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23717536

RESUMO

Brightness induction is the modulation of the perceived intensity of an area by the luminance of surrounding areas. Recent neurophysiological evidence suggests that brightness information might be explicitly represented in V1, in contrast to the more common assumption that the striate cortex is an area mostly responsive to sensory information. Here we investigate possible neural mechanisms that offer a plausible explanation for such phenomenon. To this end, a neurodynamical model which is based on neurophysiological evidence and focuses on the part of V1 responsible for contextual influences is presented. The proposed computational model successfully accounts for well known psychophysical effects for static contexts and also for brightness induction in dynamic contexts defined by modulating the luminance of surrounding areas. This work suggests that intra-cortical interactions in V1 could, at least partially, explain brightness induction effects and reveals how a common general architecture may account for several different fundamental processes, such as visual saliency and brightness induction, which emerge early in the visual processing pathway.


Assuntos
Córtex Visual/fisiologia , Vias Visuais/fisiologia , Percepção Visual/fisiologia , Animais , Simulação por Computador , Haplorrinos/fisiologia , Neurofisiologia/métodos , Psicofísica/métodos
13.
J Vis ; 10(12): 5, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-21047737

RESUMO

In a previous work (X. Otazu, M. Vanrell, & C. A. Párraga, 2008b), we showed how several brightness induction effects can be predicted using a simple multiresolution wavelet model (BIWaM). Here we present a new model for chromatic induction processes (termed Chromatic Induction Wavelet Model or CIWaM), which is also implemented on a multiresolution framework and based on similar assumptions related to the spatial frequency and the contrast surround energy of the stimulus. The CIWaM can be interpreted as a very simple extension of the BIWaM to the chromatic channels, which in our case are defined in the MacLeod-Boynton (lsY) color space. This new model allows us to unify both chromatic assimilation and chromatic contrast effects in a single mathematical formulation. The predictions of the CIWaM were tested by means of several color and brightness induction experiments, which showed an acceptable agreement between model predictions and psychophysical data.


Assuntos
Percepção de Cores/fisiologia , Visão de Cores/fisiologia , Sensibilidades de Contraste/fisiologia , Modelos Neurológicos , Cor , Simulação por Computador , Humanos , Estimulação Luminosa , Valor Preditivo dos Testes , Psicofísica
14.
Sensors (Basel) ; 10(3): 1743-52, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-22294896

RESUMO

In this paper we show how the techniques of image deconvolution can increase the ability of image sensors as, for example, CCD imagers, to detect faint stars or faint orbital objects (small satellites and space debris). In the case of faint stars, we show that this benefit is equivalent to double the quantum efficiency of the used image sensor or to increase the effective telescope aperture by more than 30% without decreasing the astrometric precision or introducing artificial bias. In the case of orbital objects, the deconvolution technique can double the signal-to-noise ratio of the image, which helps to discover and control dangerous objects as space debris or lost satellites. The benefits obtained using CCD detectors can be extrapolated to any kind of image sensors.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Astros Celestes , Telescópios , Simulação por Computador , Astronave
15.
Vision Res ; 48(5): 733-51, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18241909

RESUMO

A new multiresolution wavelet model is presented here, which accounts for brightness assimilation and contrast effects in a unified framework, and includes known psychophysical and physiological attributes of the primate visual system (such as spatial frequency channels, oriented receptive fields, contrast sensitivity function, contrast non-linearities, and a unified set of parameters). Like other low-level models, such as the ODOG model [Blakeslee, B., & McCourt, M. E. (1999). A multiscale spatial filtering account of the white effect, simultaneous brightness contrast and grating induction. Vision Research, 39, 4361-4377], this formulation reproduces visual effects such as simultaneous contrast, the White effect, grating induction, the Todorovic effect, Mach bands, the Chevreul effect and the Adelson-Logvinenko tile effects, but it also reproduces other previously unexplained effects such as the dungeon illusion, all using a single set of parameters.


Assuntos
Sensibilidades de Contraste/fisiologia , Modelos Neurológicos , Modelos Psicológicos , Reconhecimento Visual de Modelos/fisiologia , Humanos , Ilusões Ópticas/fisiologia , Orientação , Estimulação Luminosa/métodos , Psicofísica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...